The First Eccentric Zagreb Index of Linear Polycene Parallelogram of Benzenoid

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The First Eccentric Zagreb Index of Linear Polycene Parallelogram of Benzenoid

Let G = (V,E) be a graph, where V(G) is a non-empty set of vertices and E(G) is a set of edges, e = uv∈E(G), d(u) is degree of vertex u. Then the first Zagreb polynomial and the first Zagreb index Zg1(G,x) and Zg1(G) of the graph G are defined as ( ) ( ) ∑ u v u d v E G d x + ∈ and ( ) ( ) ∑ e u G v uv E d d = ∈ + respectively. Recently Ghorbani and Hosseinzadeh introduced the first Eccentric Z...

متن کامل

Fourth Zagreb index of Circumcoronene series of Benzenoid

A topological index of a graph is a numeric quantity related to a structure of a molecule which is invariant under graph automorphism. Recently, Ghorbani and Hosseinzadeh introduced Fourth Zagreb index of graphs. In this paper we determine a closed formula of this new topological index of the famous Benzenoid family named Circumcoronene series of Benzenoid Hk.

متن کامل

On the second order first zagreb index

Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...

متن کامل

On the first variable Zagreb index

‎The first variable Zagreb index of graph $G$ is defined as‎ ‎begin{eqnarray*}‎ ‎M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}‎, ‎end{eqnarray*}‎ ‎where $lambda$ is a real number and $d(v)$ is the degree of‎ ‎vertex $v$‎. ‎In this paper‎, ‎some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...

متن کامل

Note on Properties of First Zagreb Index of Graphs

Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)2. In this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we obtain the fist Zagreb index of some graph operations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Journal of Applied Sciences

سال: 2016

ISSN: 2165-3917,2165-3925

DOI: 10.4236/ojapps.2016.65031